SPHERICAL BLAST WAVES IN MULTICOMPONENT MEDIA

G. M. Lyakhov and V. N. Okhitin UDC 624.131.43.539.215

The solution of the problem of propagation of a wave in soils is presented for the case when
the wave is produced by the detonation of a spherical charge of some explosive material (EM).
The solution is obtained on a computer by the method of characteristics. The soils are re-
garded as multicomponent media consisting of solid particles, water, and air in conformity
with the model proposed in {1, 2]. The dependence of the pressure, velocity of the particles,
and the density in the wave front on the distance is determined; the variation of these param-
eters with time at fixed points of the medium is also determined. The results are compared
with the results of tests [1, 2]. Their close agreement for different contents of the components
indicates the applicability of the multicomponent model to soils. The limits of applicability of
the model are determined. The propagation of a plane wave under the same conditions was
investigated in [3].

1. Model of the Soil and the Scheme of the Process. Soils are multicomponent media having a rigid
skeleton. Therefore two mechanisms of compression exist simultaneously. The first is related to the
transmission of the load through the contacts among the solid grains, their displacement, and overpacking
(compressibility of the skeleton); the second is related to the compressibility of air, water, and the
material of the solid component (compressibility of the three-component medium). The effect of these
mechanisms on the overall compressibility in different soils and in the same solid for different loads is
different. For small loads the main reaction to the compression is offered by the skeleton. In these con-
ditions the models of elastoplastic or viscoplastic media are used. For sufficiently large loads p > p*,
when the volumetric deformations far exceed the content of the gas component in the soil, the main reac-
tion to the compression is offered by the soil as a multicomponent medium. The value of p* depends signi-
ficantly on the content of the components; p* increases with the content of the gaseous components. In
water-saturated soils with the gaseous content equal to thousandths of the volume p* corresponds to several
atmospheres; inunsaturated soils it corresponds to hundreds, thousands, and tens of thousand atmospheres.

According to the model of a multicomponent medium [1, 2] the deformations occur instantaneously at
the instant of application of the load; the tangential stresses are neglegibly small and the equations of com-
pression and decompression are of the form

po _ P\l T2 (p — po) ~1/s Y3 (P — po) ~1/7s
BT (77_0_) + % [ Pace? + 1] + % [ pacs? + 1] (1.1)

O 0+ ag=1, py= 0405+ 0a0; - U305

where a, a,, o are the volume contents of air, water, and the solid component, p,, p,, p; are their densi-
ties, ¢y, cy, Cg are the speeds of sound in them, and is the density of the three-component medium. All
these quantities are referred to atmospheric pressure p.

Different schemes of explosion are used in the solution of wave problems. At the initial a spherical
detonation wave appears at the center of the spherical charge, which is reflected from the boundary with
the medium. Later the motion of converging and diverging compression and rarefaction waves occurs
through the products of detonation. These processes are usually not taken into consideration; the detona-
tion is taken to be instantaneous and the expansion of the detonation products is taken to occur according
to the isentropic law [4, 5]. At a sufficient distance from the point of detonation with the maximum pressure
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TABLE 1 of the order of thousand atmospheres and smaller the wave parameters in
this approach are practically the same as in the more complex scheme
Medium No.| = a o taking into consideration the wave processes in the detonation. We
shall make use of this scheme.

% 8 0005 g'gg% g'g In accordance with [6] we assume that the isentropic equation of
3 0.01 0.39 0.6 the detonation products is of the form

4 0.02 0.38 0.6

2 8.04 (1).36 8.6 p= Apr - Bprit (1.2)

At large and small pressures (1.2) goes over respectively into
the equations [7]

p=palo/pn)n (1.3)

P =Do(p/po)e (1.4)

The pressure p, and density pj; correspond to the instantaneous detonation; py and p, correspond to
the atmospheric pressure.

The quantities A, B, n, and v are determined from the conditions that curves (1.2) and (1.3) must
have a common point p,p, and a common tangent at this point, and also that curves (1.2) and (1.4) must

have a common tangent for p — 0; in expansion from py, p, the detonation products do work equal to the
heat of the explosive conversion Q.

From these conditions and (1.2) we obtain a system of four equations for A, B, N, v :

Bp‘(+1

kn:n+ (Y"}"i—'n)’ "f:ko—“1
Pn e (1.5)
P p

— n n i — |

e (e e % e AR

We shall use Lagrangian variables: r —the spatial coordinate, t —time. In these variables the basic
equations of motion are of the form

% | 4 [R\wou vV  du 4 [R\vap _ i N (1.6)
5F+;;(T) TR 7+E(T) =0 H=w V=7

Here R is Euler coordinate, v =2,

System (1.6) has two families of characteristics
dp . vue .o e [R\
p—c+du+R dt=0 for dr= po(r>dt wn
gyt Mg =0 for dr=—L[BVa
pe LR - - Po r

System (1.6) is closed by Eq. (1.1). The boundary conditions at the contact discontinuity T, i.e., for
r=r, and at the shock wave front are

0/ pn = (ro/ R)® (1.8)
p—po=puD, (p—po)D =opu (1.9)

We pass on to dimensionless quantities and dimensionless Lagrangian variables

PP=p/pn 0 =plon =cley, W=ulc (1.10)
D°=D/c¢c,, RPR=R/rg, z=1rfrg, T =1,/ 1g

where r; is the radius of the charge of EM.
In the new variables the isentropic equation (1.2) of the detonation products becomes
=A%) + B (%), A% = Ap." [ p, B°= Byt /p, (.11

The quantities A°, B°, n, v are determined from equations that follow from (1.5) and (1.2)
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A+B =1, k,=n+B(—n+1D, 1=k—1
! Qe
QO= n

p° P,
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=Tty 1= h

The boundary conditions at the wave front are

10
Q —_ RO -3 . 1
\\\ L . e @e o e (1.12)
P° — P&’ = knpo DU°, (0°— %) D° = p°u®

N
\\ \\ In the dimensionless form the equation of compressibility of a

1w
\\ \ \ multicomponent medium is

©

AN ) P
Z (1.13)

' v/ z 0 o [73 (2° — ps°) 4 1]-1/7.
kpps°c3®®
Fig. 1 "

w*

The characteristic equations are

dpo vu'c® copo
—_— d ot ey —=
v +du®+ 5 dv=0 for dzr= -4 o

(R" ) dv (1.14)

x

The problem was solved for a trotyl-type EM, five water-saturated soils with different contents of the
gaseous component and water. The computed characteristics of the EM and the media are given in Table 1
for kp =3, ky=1.25, pp =96,000 kg/cm?, p,=1.6 g/cm?, Q=1000 cal/g.

The porosity of the soils was identical, n=0.4, p;=12"107* g/em?, p,=1g/cm?, p;=2.65 g /em?, ¢, =
330 m /sec, c, =1500 m /sec, ¢y =4500 m /sec, v,=1.4, y,=7, y3=4. Here n= a,+a,.

In the investigated problem the plane xT contains three types of points (at each of these the param-
eters are computed according to separate algorithms): at the shock wave front S, in the medium between
S and the contact discontinuity T, and at the contact discontinuity T.

The step Ax along the spatial coordinate was taken constant. The magnitude of the step depends on
the required accuracy of the computation. The step in time varies from layer to layer in accordance with
the scheme [8].

We consider the sequence of the computation of the parameters at the front S. Let points A and B lie
on a single time layer. The parameters at these points are unknown. Points B and K lie in the shock front.
The parameters at K are determined. For starting the computation the parameters p° and u° of point B are
carried over to point K. Then the characteristic is drawn from K to the preceding time layer. We denote
the point of its intersection with line AB by L. The coordinate of this point is

On0 RO v
IL=.’IZK——[::: (T) ]KLA'IT, BK°=.'L‘K=RB°—§— Ax
\

The index KL indicates that the quantities in the brackets take average values between K and L. In
the first computation they coincide at point K. The quantities py°, uy°, Ry° are determined from the co-
ordinate xy, by interpolation over the parameters at points A and B. Here p°=p°(py), c1,°=c° (o)-

The refined values u°, p°, D°, and p° at point K are obtained from p;°, uy°®, Ry’ using the equations
at the shock wave front and the condition satisfied at the characteristic

Px° — po° = knpo®Dx°ur®s (px° — p0°) D&° = px°ug®
[1/ Fnp®cIkr. (Px® — pr°) + (Ug® — ur®) — |vu’c®/ R°lgL At =0
Together with (1.13) we obtain a system of four equations for the four unknowns.

The computation was repeated a given number of times for refining the results.

The computation at the other types of points is done in a similar way, starting from the characteris-
tic equations in the medium and Egs. (1.8) and (1.11) at the contact discontinuity.
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2. Results of Computation, Let us consider the param-
eters at the shock front. The graphs of the dimensionless
quantities,i.e., the pressure and the velocity of the front,
are shown in Figs. 1-2, Here and below the numbering of
the curves corresponds to the sequence of the media in Table
/ 1. The computed graphs are shown by continuous lines, the
- § experimental by dashes. It follows from a comparison of the
\\\~\ curves in Fig. 1 that the rate of decay of the maximum pres-
27T sure with the distance increases substantially with the in-

crease in the content of the gaseous component in the soil.

Z For a,=0.04 the pressure at a sufficient distance from the
point of explosion is almost two orders of magnitude smaller
than for oy =0. In water (graph 6) the pressure decays more
rapidly than in the soil with a; =0, but considerably less
rapidly than in media containing air.
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The dependence of the velocity of the wave front D° on
—— the distance is shown in Fig. 2. The rate of decrease of the
velocity increases considerably with the increase in the air
content: the most intense change in D° in all media occurs
close to the point of explosion. Later the decrease of the
velocity slows down considerably and its dimensional value
gradually approaches the speed of sound ¢ given by the equa-
tion that follows from (1.1)

80 = 100

e Ao o )'1

Cy” = ) \91012 'l" poce? + 93032 (2.1)
For n=0.4 and o respectively equal to 0, 0.005, 0.01, 0.02, 0.04 the values of ¢, are 1620, 355, 85,58,

and 41 m/sec. For «;=0 the velocity D differs from ¢, by several percents even at a distance x ~ 30;

for a;=0.04 the difference starts at larger distances (x ~100).

The computations show that the rate of decrease of the particle velocity uw’ does not increase mono-
tonically with o, as in the case of D°. At small distances u° decreases with increasing o, but later the
curves u° (x) corresponding to different air content may intersect. Thus, for x=10 u° is larger in the
medium with ¢, =0.01 than in the medium with a;=0.04; for x > 10 the reverse situation is observed.
For x< 86 the velocity in the medium with a; =0.0005 is greater than in the medium with «; =0.04; for
X > 86 the dependence becomes reverse. In water the velocity of particles is larger than in other media.
A similar nature of variation of u” is observed also in the case of plane waves [3].

Let us consider the variation of the parameters with time at fixed points of the medium. The graphs
of p° (1) and v°® (1) at points with coordinates x equal to 11.1 and 37 are shown in Figs. 3 and 4. Tt follows
from the graphs that with the increase in o, the pressure decreases not only at the wave front but also be-
hind the front. Thus, for example, in media with «;=0.01 and 0.04 the pressure at the front close to the
point of explosion differs by a factor of 10, while for 7 > 200 it differs only by a few percent.

For a comparison of the rates of decay of the pressure behind the front in different media we intro-
duce a quantity 6« which is equal to the time in which the pressure at a fixed point decreases by a factor e;
the corresponding dimensionless quantity is 04°=0,cn/7;. In all media 9+° increases with the distance
from the point of explosion. The rate of increase of 94° with the increase in the air content also increases.
For «;=0 and x=17.64, 19.11, 50, and 300 the values of 9*° are 4.9, 7.9, 11.4, and 19.5 respectively. For
a,=0,01 and x=8,25, 10, 20, 30, 50 #4°=5.5, 6.7, 9.3, 280, and 1000 respectively. For a,;=0.04 and x=4,
7.69, 17.6, and 30 ¢ x°=3, 18.5, 206, 820. The dependence 0,° (%) is shown in Fig. 5. Graphs 6 is con-
structed from the experimental data for water [9]. The computed graph for water is not shown, since it
practically coincides with 6. (For x=4, 10, 21, 26.9, 120, and 300 the obtained values are 4,°= 2.4, 4.8, 8,
12,5, 19.1.)

The increase in the content of the gaseous component leads to a significant decreasq of the rate of
pressure decrease behind the wave front and to an increase of 94°. The values of 4,° practically coincide
in water and a two-component medium.
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The velocity of particles behind the wave front (Figs. 3 and 4) at points located at small distances
(x=11.1) at first decreases with the passage of time and then slightly increases. For x=37 this dependence
is retained in the case «, =0 and 0.005, but in media with large air content the increase of the velocity be~
gins immediately behind the front. With time the velocities of the particles in all media become equal.

In an explosion a flux appears propagating from the gas chamber. Its velocity decreases with dis-
tance in all media, but at fixed points it may both increase and decrease with the time. Later on the veloc-
ity of the flux begins to decrease as a result of decrease of the dimensions of the gas chamber.

In the investigated media the change of pressure behind the wave front can be approximately de-
scribed by the equations

° = p, °e~/0° °
Pm’e for ©<H, 2.2)
P’=pp0°/ev for v>0°

where 7 is the time reckoned from the instant of arrival of the front at the investigated point and pp,° is
the pressure at the wave front.

The graphs constructed from these equations practically coincide with the computed graphs in all
media with «, =0.005, The difference in the curves increases with increasing o;.

A comparison of the wave parameters in water and in a two-component medium (quarts) shows that
the presence of solid particles in water causes an increase in the pressure and the velocity of the wave
front, and a decrease of the velocity of the particles. Physically this is explained by the decrease of com-
pressibility of the medium and the increase of its density.

The inclusion of the gaseous component does not significantly reduce the density but increases the
compressibility significantly. This results in an increase of the curvature of the compression diagram and
an increase of the losses in the shock front.

3. Comparison of Computational and Experimental Results, The process of dynanﬁc deformation of
a medium consisting of a solid frame, whose pores are filled with liquid and fine gas bubbles, is complex.
In the investigation model it is assumed that the propagation of the blast waves is primarily determined by
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the percent content of the components and their compressibility. Furthermore, it is possible to consider
the difference in the velocities of displacement of the components and the stresses in them, the percent
content of gas bubbles of different radius, the surface tension, the compressibility of the frame, the pres-
ence of tangential stresses in the frame, the phase transitions in the solid component, the change of tem-
perature during the shock compression, and so forth. The effect of some of these factors is investigated
in [10-14]. Their inclusion leads to an extreme complication of the model, which does not enable one to
solve the explosion problem in these premises.

The purpose of the comparison of the computational and experimental results is to determine the
applicability of the investigated model to water-saturated soils, where the content of the gaseous component
is small and usually does not exceed 4-5% of the total volume.

The graphs of the dependence of the pressure in the wave front on the distance are shown in Fig. 6.
The continuous lines pertain to computations and the dashes to experimental data. The experiments [2]
were conducted for camouflet explosions of concentrated trotyl charges with 1.6, 5, and 40 kg weight in
water-saturated sandy soils (curves 1, 2, 3, 5) and of charges with 5 and 25 kg weight in water-saturated
clay soils (curve 4). The porosity of the sandy soils was n ~0.4, of clay n~0.2. The media were finely
dispersed; the radius of the gas bubbles ranged from 0 to 0.05 cm.

The content of trapped air in the same test areas was not identical. The deviations reached 50% of
the mean value. The values of o, for the computations were taken from the mean values.

There is a good agreement between the behavior of the experimental and computational curves. The
divergence of graphs 3 and 4 is somewhat larger than in other media, which should be explained by the
possible exceedance of the true valuesas compared to the values used in the computations. For the soil
with ¢;=0.02 the value of n taken in the computations is n=0.4. Actually the soil was denser (n=0.2).
This also must result in a difference in the graphs. The divergence of the experimental and computed
graphs in soils containing air increases with the distance from the point of explosion. In all cases the ex-
perimental results are higher than the computations.

The dependence of the velocity of the wave front on the distance is shown in Fig. 2. As in the case of
the pressure the computed and experimental curves are in agreement. The computed values of D tend to
the computed value of the speed of sound with increasing distance. For «; =0.01 the experimental values
of D do not go below 150-200 m/sec, which corresponds to the velocity determined by the compressibility
of the frame of the soil.

A comparison of the computed and experimental values of shows that there is a good agreement in
soils with a; = 0.0005. As oy increases the experimental values of 04° increase but to a smaller extent
than the computed values. The difference increases with the distance from the point of explosion. For the
largest value o, =0.04 at a distance x=20 the computed value is 290, while the experimental value is ~200;
at x=30 the computed value is 820, while the experimental value is ~ 380.

According to the computations the wave remains a shock wave in all media at all distances. In the
experiments in media with o, = 0.01 the shock wave turns into a continuous compression wave as the dis-
tance from the point of explosion increases. For C =5 kg a noticeable smearing of the jump is observed in
medium with «,=0,01 at a distance x=45, and in the medium with o;=0.04 at x=20.
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1t follows from the comparison of the computed and experimental results that the investigated model

reflects the basic physical characteristics of deformation of multicomponent media that are important for
the propagation of blast waves. In a two-component medium (solid particles ~water) and in a three-com-
ponent medium with o, = 0.0005 the computed and experimental values of the parameters practically coin~
cide. A significant change in the pressure, the front velocity, and the velocity of the particles is observed
(by one-two orders of magnitude) in the computations as well as in the experiments on increasing the con-
tent of the gaseous component. The decrease of the front velocity to 150-200 m/ sec observed in the experi-
ments with a;=0.01 and also the smaller decrease of the duration of the wave than in the computations are
explained by the fact that at small pressures the total compressibility of the components in these media be-
gins to exceed the compressibility of the frame.

As shown in [15], the smearing of the jump at the front and the conversion of the shock wave info a

continuous compression wave are caused by the bulk viscosity of the medium; it follows from the model
taking account of the viscous properties. In multicomponent media containing gas bubbles the viscous
properties are primarily related to noninstantaneous compression of the bubbles under the action of the
load, whose effect is particularly noticeable in the range of small pressures.
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